The Average Number of Divisors of the Euler Function

نویسنده

  • SUNGJIN KIM
چکیده

The upper bound and the lower bound of average numbers of divisors of Euler Phi function and Carmichael Lambda function are obtained by Luca and Pomerance (see [LP]). We improve the lower bound and provide a heuristic argument which suggests that the upper bound given by [LP] is indeed close to the truth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the average number of divisors of the Euler function

We let φ(·) and τ(·) denote the Euler function and the number-ofdivisors function, respectively. In this paper, we study the average value of τ(φ(n)) when n ranges in the interval [1, x].

متن کامل

A remark on the means of the number of divisors

‎We obtain the asymptotic expansion of the sequence with general term $frac{A_n}{G_n}$‎, ‎where $A_n$ and $G_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$‎, ‎with $d(n)$ denoting the number of positive divisors of $n$‎. ‎Also‎, ‎we obtain some explicit bounds concerning $G_n$ and $frac{A_n}{G_n}$.

متن کامل

On the Srnarandache Irrationality Conjecture

Here is an immediate proof in the following cases: 1. a(n) = n: 2. a(n) = d(n) =number of divisors of n; 3. a(n) = w(n) =number of distinct prime divisors of n: 4. a(n) = D(n) =number of total prime divisors of n (that is. counted with repetitions): 5. a(n) = dJ(n) =the Euler function of n: 6. a( n) = cr( n) =the sum of the divisors of n; 7. a(n) = Pn =the nth prime: 8. a(n) = 71(n) =the number...

متن کامل

Arithmetic Functions and the Euler Phi Function

• An arithmetic function takes positive integers as inputs and produces real or complex numbers as outputs. • If f is an arithmetic function, the divisor sum Df(n) is the sum of the values of f at the positive divisors of n. • τ (n) is the number of positive divisors of n; σ(n) is the sum of the positive divisors of n. • The Möbius function μ(n) is 1 if n = 1 and 0 if n has a repeated prime fac...

متن کامل

On the Coprimality of Some Arithmetic Functions

Let φ stand for the Euler function. Given a positive integer n, let σ(n) stand for the sum of the positive divisors of n and let τ(n) be the number of divisors of n. We obtain an asymptotic estimate for the counting function of the set {n : gcd(φ(n), τ(n)) = gcd(σ(n), τ(n)) = 1}. Moreover, setting l(n) := gcd(τ(n), τ(n+ 1)), we provide an asymptotic estimate for the size of #{n 6 x : l(n) = 1}.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017